Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121022, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621717

RESUMO

We investigated the structural and functional changes of the soft-bottom macrofaunal community following the improvement of a wastewater treatment-WWT plant. The macrofauna was collected at increasing distance from the main outfall in 2018, 2019, and 2021. Organic matter and nutrients were analysed in the water column near the outfalls to detect possible changes due to the improved treatment. We examined Functional Entities-FEs (i.e. a unique combination of species functional traits), species richness, Shannon-Wiener diversity-H', and taxonomic and functional ß-diversity. From 2018 (before the year of the treatment change), to 2021, we noted a gradual decrease of organic carbon in the water column. In contrast, sediment characteristics (i.e. grain-size) did not change before and after treatment enhancement, with the exception of redox potential. Species richness and FEs gradually increased moving far from the source of organic contamination and after wastewater treatment enhancement, especially near the outfall. We observed different phases of macrofaunal succession stage after the WWT amelioration. A 'normal stage', i.e. slightly lower species richness, was reflected in decreasing functional richness. Higher taxonomic ß-diversity values with significant turnover components indicated that the community was subjected to broad changes in species composition. However, functional ß-diversity did not follow the same pattern. After treatment improvement, modified environmental conditions led to the establishment of new species, but with the same functions. Towards 2021, the community improved its resilience by increasing functional redundancy and reduction of vulnerability, which enhanced community stability. The latter was also reflected in the well-balanced proportion of macrofaunal feeding habits after the WWT upgrade. Integrating the classical taxonomic approach with the analysis of FEs, and environmental characteristics can provide an accurate insight into macrofauna sensitivity to stressors that are likely to lead to changes in the ecological state of an area.


Assuntos
Esgotos , Água , Carbono , Biodiversidade , Ecossistema
2.
Mar Pollut Bull ; 182: 113972, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907359

RESUMO

We studied the macrobenthic invertebrate biomass (B), production (P), productivity (P/B̅-ratio), and transfer efficiency (TE) influenced by sewage effluents discharge in a diffusion zone. Our results indicated a clear distribution pattern of macrofauna communities along the sewage discharge gradient where biological factors (B, P, P/B̅, and TE) were driven by changes observed in community structure, composition, and the influence of environmental variables. The lowest B, P, and P/B̅ were observed at the stations sampled close to the pipelines. Abundance, biomass, production, and productivity increased with increasing distance from the pipelines toward stations placed at 100 m distance and then decreased toward the stations placed at >200 m, where there was a negative relationship between TE and B of macrofauna at sampling stations. Overall, there was a clear influence of the sewage discharge on macrofauna communities, but surrounding environment was influenced moderately by organic impact and discharges had no negative impacts.


Assuntos
Monitoramento Ambiental , Esgotos , Animais , Biomassa , Ecossistema , Invertebrados
3.
Mar Pollut Bull ; 173(Pt A): 113003, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628343

RESUMO

We assessed the effect of sewage-derived materials on the structural and functional attributes of the soft-bottom macrofauna at an increasing distance from the entire diffusion area. Our results showed clear spatial changes of macrofaunal density and biomass along the distance gradient from the main outfall. High values of biodiversity, species composition, and species linked to organic enrichment near the duct suggested that moderate organic stress affected this community. The traits analysis abundance-based, compared to biomass-based one, distinguished most clearly sewage contamination conditions. Functional diversity displayed spatial patterns with higher values in the less impacted sites and was significantly related to species numbers and the biotic indices (like M-AMBI). This approach is ideal for detecting macrofaunal functional changes due to sewage contamination. Thus, we infer that traits analyses could offer great potential for environmental assessment and monitoring of coastal areas influenced by human activities.


Assuntos
Ecossistema , Esgotos , Animais , Biodiversidade , Biomassa , Monitoramento Ambiental , Humanos , Invertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...